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The Arctic climate was warmer than today at the last interglacial
and the Holocene thermal optimum. To reveal the impact of past
climate-warming events on the demographic history of an Arctic
specialist, we examined both mitochondrial and nuclear genomic
variation in the collared lemming (Dicrostonyx torquatus, Pallas), a
keystone species in tundra communities, across its entire distribu-
tion in northern Eurasia. The ancestral phylogenetic position of the
West Beringian group and divergence time estimates support the
hypothesis of continental range contraction to a single refugial
area located in West Beringia during high-magnitude warming
of the last interglacial, followed by westward recolonization of
northern Eurasia in the last glacial period. The West Beringian
group harbors the highest mitogenome diversity and its inferred
demography indicates a constantly large effective population size
over the Late Pleistocene to Holocene. This suggests that north-
ward forest expansion during recent warming of the Holocene
thermal optimum did not affect the gene pool of the collared
lemming in West Beringia but reduced genomic diversity and ef-
fective population size in all other regions of the Eurasian Arctic.
Demographic inference from genomic diversity was corroborated
by species distribution modeling showing reduction in species dis-
tribution during past climate warming. These conclusions are sup-
ported by recent paleoecological evidence suggesting smaller
temperature increases and moderate northward forest advances
in the extreme northeast of Eurasia during the Late Pleistocene-to-
Holocene warming events. This study emphasizes the importance
of West Beringia as a potential refugium for cold-adapted Arctic
species under ongoing climate warming.

Beringia | climate warning | interglacial | Holocene optimum |
mitogenome

In polar regions, the magnitude of recent climate warming is
larger than in other parts of the Earth (1) and this amplified

warming significantly impacts cold-adapted Arctic and Antarctic
biotas (2–4). An informative approach to predict the biological
consequences of ongoing Arctic warming in the near future is to
assess past biotic responses to the Late Quaternary warming events.
In the recent past, Arctic climate was warmer than today at both the
last interglacial (the Eemian, 130 to 110 thousand years ago; kyr) and
the Holocene thermal maximum between 10 and 3 kyr (1, 5). Species
distribution shifts, often associated with local extinction, were the
most common response to the Late Quaternary environmental
change (6). During warming events, Arctic tundra was reduced as
boreal forest communities advanced to the north and was simul-
taneously restricted from northward retreat by the seacoast (1, 5).
Contraction of distribution ranges is expected to reduce effective
population size and genetic diversity, making Arctic terrestrial
species vulnerable to climate warming. However, demographic
and genetic effects of past warming events on a continental
scale across the Eurasian Arctic remain largely unknown.

Collared lemmings (Dicrostonyx), the northernmost rodents
and keystone species in the Arctic tundra communities, evolved
and have long been associated with cold and dry treeless tundra
landscapes (7–10). The fossil record shows that during glacial
periods, collared lemmings expanded their distribution thou-
sands of kilometers to the south and west while in warm periods of
the past and present interglacials their range was restricted to the
Arctic (11). Previous studies have revealed the low mitochondrial
(mt)DNA diversity in the Eurasian collared lemmings, suggesting
reductions in long-term effective population size which most
likely resulted from range contractions during the Late Quater-
nary warming events (12, 13). However, this explanation remains
ambiguous due to the obscure position of the root in phylogeny,
uncertain calibration of the molecular clock, and limited sam-
pling in the extreme northeast of the Eurasian Arctic. Neverthe-
less, recent paleogenetic studies (14, 15) support the significant
impact of environmental change in the Late Quaternary on
the genetic diversity and demographic history of the collared
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lemming. Synchronous genetic replacements in populations of the
collared lemming implied repeated extinctions and recolonizations
associated with environmental fluctuations over the last 50 kyr in
western Eurasia (15). On a local scale, an ancient DNA study in a
single population of the collared lemming from western Eurasia
detected a drastic decrease in genetic diversity after the last gla-
cial maximum (22 kyr) and over the Holocene, suggesting a
pronounced demographic reduction during warming events (14).
To reveal the impact of past climate-warming events on the

demographic history of Arctic species, we examined both mito-
chondrial and nuclear genomic diversity in collared lemming
populations from across its entire modern distribution (Fig. 1).
We put special emphasis on sampling across the Chukotka Pen-
insula in the eastern part of the species distribution to include
West Beringia, a geographic region with distinct environmental
history (16) that has been proposed as a possible location of warm
interglacial refugium (17). On a continental scale, we recon-
structed a calibrated phylogeny and estimated divergence times to
assess possible range contraction to a single refugium as a species-
wide response to large-magnitude climate warming during the last
interglacial. On a regional scale, we estimated genomic diversity,
reconstructed demographic history, and compared estimates
across geographic regions with different environmental histories to
reveal the impact of the Holocene climate warming. To validate
demographic events reflected in current genomic variation, we
used independent evidence from species distribution modeling to
infer changes in species range during past warming events.

Results and Discussion
Phylogeographic Structure across the Eurasian Arctic. The maximum-
credibility tree based on mitogenome sequences (Fig. 2) shows the
main phylogenetic division across the Bering Strait separating the
Eurasian and North American lemmings. In Eurasia, there are 5
major monophyletic groups of haplotypes corresponding to dif-
ferent geographic regions. This indicates a clear association be-
tween phylogenetic relationships and the geographic origin of the
haplotypes. The most ancient phylogenetic division separating the
West Beringian group and all other Eurasian phylogroups
(Pechora, P; Yamal, Y; Taymyr, T; Yana-Kolyma, YK) is across
the Kolyma River (Figs. 1 and 2). The discrete phylogeography
analysis suggested West Beringia (WB) as the most likely (Bayes
factor 2.8 to 4.4) location of the ancestor of all lineages in Eurasia.

The nuclear genome phylogenies are congruent with the phylo-
geographic structure based on variation in mitogenome sequences.
The Neighbor-Net (Fig. 3) based on the number of nucleotide dif-
ferences (p distances) across concatenated restriction site‐associated
DNA (RAD) loci shows 4 groups with allopatric distribution
in the Eurasian Arctic regions and the most divergent outgroup
clustering all individuals of the North American lemmings
Dicrostonyx groenlandicus. Similar to the mitogenome phylog-
eny, the West Beringian cluster is the closest to the outgroup
among the Eurasian lineages in a TreeMix based on allele fre-
quencies (Fig. 4A). The TreeMix analysis also suggested a maxi-
mum of 2 events of secondary contact and admixture between
divergent groups (Fig. 4A). A fineRADstructure analysis (Fig. 4B)
provides further support for the phylogeographic structure
revealed by the Neighbor-Net and TreeMix reconstructions. The
coancestry matrix summarizing the nucleotide differences among
individuals across all RAD loci (Fig. 4B) shows more common
ancestry among alleles within a geographic region (Y, T, YK, WB)
as compared with individuals from different regions. However,
consistent with the migration event detected by TreeMix, there is
indication of admixture in the population from Taymyr, where
individuals show high coancestry with each other but also with
lemmings from other regions.
Our study shows a clear phylogeographic structure associated

with significant reciprocal monophyly in the Eurasian collared
lemmings. Notably, our present results demonstrate congruence
between geographic patterns of mitochondrial and nuclear ge-
nomic variation and provide statistical support for the West
Beringian location of the ancestor of all Eurasian lineages. It was
previously proposed on the basis of limited mtDNA nucleotide
divergence that the distribution of the collared lemming
in Eurasia was contracted to a single refugium, possibly located
in West Beringia, during climate-warming events in one of the
interglacials (17). However, this hypothesis has been complicated
by the lack of statistical support for the tree topology and im-
precise estimates of divergence time. Our mitogenome molecu-
lar clock, calibrated by the first occurrence of fossil records in
North America, dates the most ancient phylogenetic division
separating the basal West Beringian group from other Eurasian
lineages (104 kyr; 95% highest posterior density [HPD] 74 to 142 kyr)
to the beginning of the last glacial period (110 to 10 kyr) and
after the last interglacial (130 to 110 kyr). The time points for
our calibration are based on the first occurrence of Dicrostonyx

Fig. 1. Sampling locations and geographic ranges of the phylogeographic groups (Figs. 2 and 3) of Eurasian collared lemmings. Bars show mitogenome
nucleotide diversity and its SD estimates in regions (green) affected by northward forest expansion during the Holocene thermal maximum compared with
West Beringia (gray) with limited forest advances.
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fossils in North America at 700 to 740 kyr (18, 19) and the latest
North American record of its ancestor, Predicrostonyx (20),
dated to 1.5 to 1.7 My (21). It was suggested that a short-term
mtDNA substitution rate estimated over time of less than 1 to 2
My is considerably higher than the rate inferred from species
phylogeny (22). Although a very high short-term substitution
rate was previously reported for 2 species of arvicoline rodents
(23, 24), our phylogenetic rate estimate of 5.6E-8 substitutions
per site per y (95% HPD 4.0E-8 to 7.3E-8), calibrated using the
fossil-based time points, is similar to the tip rate of 6.0E-8
obtained from ancient mtDNA over just 22 kyr under the
“open population with bottleneck” model for collared lem-
mings from Pechora (14), suggesting a minor bias in our sub-
stitution rate estimate due to time dependency. Taken together,
the tree topologies and divergence time estimates support the
hypothesis of range contraction to West Beringia in the last in-
terglacial, followed by recolonization of northern Eurasia during
the last glacial period. Even considering a mitochondrial sub-
stitution rate 4 times higher than we estimated in the collared
lemming [as in the case of Microtus (23, 24)], the divergence
between the West Beringian and other Eurasian mitogenomes
is consistent with the recolonization from West Beringia in the

last glacial period (110 to 10 kyr). Consistently, species distri-
bution models predict about 50% habitat loss during the
warming of the last interglacial relative to the present collared
lemming distribution in Eurasia and 80% relative to the last
glacial maximum, with suitable habitats persisting in West
Beringia (SI Appendix, Fig. S2). Actual habitat loss likely exceeded
this estimate due to inundation of Arctic land as a result of sea-
level rise during the last interglacial warming (25).
Support for the significance of West Beringia as a warm in-

terglacial refugium for cold-adapted species associated with a
treeless environment comes from recent advances in the paleo-
ecology of the Eurasian Arctic. Paleoclimate reconstructions show
that the climatic optimum during the last interglacial was the
warmest event of at least the past 250 kyr and this warmth strongly
affected the Arctic biota (5). Terrestrial records suggest that the
Arctic amplification produced last interglacial summer tempera-
ture anomalies 4 to 8 °C above present over the most of the Eur-
asian Arctic but a smaller increase of 2 to 4 °C was inferred in West
Beringia (5). The last interglacial increase in summer temperature
promoted the northward boreal forest expansion with tree line
reaching the Arctic Ocean coastline and likely eliminating tundra
from the landscape across the European (26, 27) and most of the
Siberian Arctic (28, 29). Two collared lemming fossil assemblages
stratigraphically separated by a fossil-wood horizon representing a
pronounced warm event of the interglacial were reported in the
Yana-Kolyma region (30). This finding provides direct paleon-
tological evidence that the presence of the collared lemming was
interrupted by the northward forest expansion during the warm
interglacial. The climate reconstructions for West Beringia
demonstrate a less pronounced increase in summer temperature
than inferred for the Arctic regions to the west of the Kolyma
River during the last interglacial (5, 31). Although the extent of
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Fig. 2. Maximum-credibility tree based on mitogenome sequences of col-
lared lemmings. Horizontal bars represent the 95% CI for node divergence
time shown by the numbers; asterisks indicate major nodes supported with
posterior probability 1. Information about the sequences is provided in SI
Appendix, Table S1. Green bars show warming periods of the last interglacial
(130 to 110 kyr) and Holocene thermal maximum (10 to 3 kyr).

Fig. 3. Neighbor-Net tree based on nucleotide differences across concate-
nated RAD loci. All phylogeographic groups are supported (bootstrap > 95%).
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tree line advance in West Beringia during the last interglacial
optimum remains under debate (16), pollen records indicate that
a tree line shifted 150 km north from its current position (16, 32) but
was still located 265 km south of the Arctic coast. The biome
reconstructions suggest that treeless tundra was an important
landscape element in West Beringia during the last interglacial (16).
A recent paleogenetic study of the collared lemming by

Palkopoulou et al. (15) identified 5 mitochondrial lineages that
succeeded each other over the last 50 kyr across western Eurasia,
reflecting repeated population extinction and recolonization likely
due to environmental change during the Late Quaternary. An
elaborate comparison of our modern mitogenome data and
paleogenetic results is complicated by shorter ancient cytochrome

b sequences (780 bp) and relatively limited sampling of the
Pleistocene fossil remains from the modern distribution range of
the collared lemming (15). Nevertheless, basal phylogenetic posi-
tions and higher genetic diversity of the Late Pleistocene samples
from northeastern Eurasia (15) are consistent with our conclusion
that the primary interglacial refugium and source of recoloniza-
tions was likely located in West Beringia. Notably, all modern cy-
tochrome b sequences belong to the mtDNA lineage (EA5) that
appeared in western Eurasia at 20.5 kyr (15), thus suggesting a
recent origin for the phylogeographic structure revealed by our
analysis of the present-day variation in nuclear and mitogenome
sequences. This scenario is not excluded by mitogenome data
showing considerable overlap between 95% HPD intervals for di-
vergence time among the 5 major phylogeographic groups (Fig. 2)
and the time to the most recent common ancestor (TMRCA) in
the West Beringian phylogroup (Table 1). Under the assumption
of similar nucleotide diversity defining the TMRCA in the ancient
West Beringian population, colonization from this genetically di-
verse source population followed by regional bottlenecks after the
last glaciation (see next section) likely accelerated formation of the
monophyletic groups observed across the modern species range.
Additional studies of ancient DNA sequences from West Beringia
are needed to elucidate the spatial–temporal dynamic of genetic
diversity reflecting demographic history of the collared lemming.

Genetic Diversity and Demography in the Arctic Regions with
Different Holocene Environmental History. To infer demographic
history, we analyzed genetic diversity in the 5 Eurasian phylo-
geographic groups defined by the maximum-credibility tree (Figs.
1 and 2). The TMRCA in the West Beringian group (Table 1)
significantly exceeds the age of the TMRCAs (i.e., post glacial) in
the other 4 phylogeographic groups (P, Y, T, YK). Consistent with
the differences in the age of common ancestry, mitogenome nu-
cleotide diversity estimates in the 4 phylogeographic groups (P, Y,
T, YK) to the west of the Kolyma River are at least 7.5-fold lower
as compared with the West Beringian group (Fig. 1 and Table 1).
Notably, the West Beringian phylogroup distributed over 1,300 km
of the Arctic coast harbors a similar amount of mitogenome di-
versity as combined gene pools of all other populations across
3,800 km of the Eurasian Arctic. To account for the effect of
population structure on the high mitogenome diversity within the
West Beringian group, we excluded the fraction of mitogenome
variation allocated among local populations within regions by
comparing intrapopulation diversity estimates in 4 West Beringian
populations and 8 populations from other regions (SI Appendix,
Fig. S1 and Table S2). Consistent with the comparison among
phylogeographic groups, nucleotide diversity estimates in theWest
Beringian populations (range 0.208 to 0.483%) significantly ex-
ceed (P = 0.0084) mitogenome diversity (range 0.015 to 0.070%)
in other local populations. The westernmost population (Pechora)
was excluded from further demographic analysis due to small
sampling size, with only 4 individuals sampled from a single lo-
cality (Table 1). To assess the significance of demographic ex-
pansion, we used Fu’s F statistic and the R2 statistic that are the
most powerful tests for detecting population growth with small
sampling size (33). Estimated with the mitochondrial data, nega-
tive F-statistic values were significantly different from 0 in 2 phylo-
geographic groups (Y, T) west of the Kolyma (Table 1), indicating
an excess of low-frequency haplotypes as compared with the
expected number under constant population size, which provides
evidence of population expansions. This inference is supported
by significantly small values of the R2 statistic (Table 1), indicating
an excess of singleton substitutions that is consistent with de-
mographic expansions in all 3 examined phylogroups (Y, T, YK)
to the west of the Kolyma. Further support for demographic ex-
pansion comes from the Bayesian skyline plot analysis showing a
sudden increase in the effective population size of females at 4 to
2 kyr in the 3 phylogeographic groups (Y, T, YK) to the west of the

Fig. 4. Genetic differentiation across Eurasia revealed by nuclear genome
variation in collared lemmings. (A) The TreeMix reconstruction based on
allele frequencies of RAD loci. Arrows indicate 2 events of admixture. (B) The
coancestry matrix summarizing the nucleotide differences among individ-
uals across all RAD loci in the 4 Eurasian phylogeographic groups. The color
scale indicates coancestry as the number of loci for any 2 individuals more
similar to each other than to any other individual. Geographic regions are
designated as in Table 1 and Fig. 1 with sampling size in parentheses.
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Kolyma (Fig. 5). In contrast, no signs of demographic expansion
were detected by either test in the West Beringian phylogroup,
which was instead characterized by high nucleotide diversity and
relatively constant population effective size with some gradual
increase over the last 60 kyr (Fig. 5 and Table 1). Compared with
mitogenome diversity (Table 1), differences in nuclear genome
diversity across the Eurasian phylogeographic groups are smaller
(SI Appendix, Table S3). The highest RAD diversity estimates in
the Taymyr group reflect ancient admixture as revealed by the
coancestry matrix (Fig. 4). Consistent with differences in mitoge-
nome nucleotide diversity, nuclear genome diversity in the West
Beringian phylogroup tends to exceed estimates in the 2 Eur-
asian regions (Y, YK) without signs of population admixture.
In contrast to the high genetic diversity in the West Beringian

phylogroup, mitogenome samples in the 4 regions (P, Y, T, YK)
to the west of the Kolyma River demonstrated low nucleotide
diversity, signs of demographic expansion, and recent time of
common ancestry, with the earliest estimate around the
Pleistocene-to-Holocene transition at 11.5 kyr. The lower mito-
genome diversity suggests different demographic history, namely
a smaller historical effective population size within the 4 regions
across the Eurasian Arctic, compared with West Beringia. This
difference in demographic history cannot be directly attributed
to the impact of the last glaciation, as most of the Eurasian Arctic
was not glaciated (34). It was suggested that the low mtDNA di-
versity resulted from regional bottleneck events due to the
northward forest expansion contracting suitable tundra habitats to
the west of the Kolyma River during Holocene warming (12, 13).
Pollen and plant macrofossil records show that, over a large part
of northern Eurasia, forest expanded to or near the Arctic
coastline between 10 and 3 kyr during the Holocene thermal
maximum (35–38). The significant impact of Holocene warming
on the lemming’s demographic history is supported by the present
study. The species distribution models predict at least 25% habitat
loss during the Middle Holocene compared with the present col-
lared lemming distribution and, relative to the last glacial maxi-
mum, about 70% of habitat was lost across the Palearctic (SI
Appendix, Fig. S2). Our analysis of demographic history based on
mitogenome sequences (Fig. 5) detected a sudden increase in
effective size at 4 to 2 kyr in the 3 regions (Y, T, YK) that were
affected by forest advances, and timing of this population growth
is consistent with tree line retreat to the current position and ex-
pansion of tundra biome at 3 kyr during the Late Holocene
cooling (37). The significance of the Holocene environmental
changes is further supported by the high mitogenome diversity
indicating a constantly large population size in West Beringia
where, in contrast to the rest of the Eurasian Arctic, little change
in the position of the tree line was detected (36) and tundra
landscape dominated throughout the Holocene (16, 35).
A recent paleogenetic study in a single population of the col-

lared lemming from the Pechora region detected a drastic de-
crease in mtDNA diversity after the last glacial maximum (22 kyr)
and over the Holocene that implies a pronounced demographic

reduction (14). In this region, forest arrived at the coast (39) and
fossils of the collared lemming were replaced by remains of taiga
forest rodents between 8 and 4.5 kyr during the Holocene thermal
optimum (40). These results support our inference that the low
mitogenome diversity in the modern Pechora population reflects a
decrease in effective size due to northward forest expansion con-
tracting tundra habitats during the Holocene warming. Our study
shows that the impact of the Holocene warming was not limited to
a local scale but reduced the genetic diversity and population size
of cold-adapted species in most geographic regions over the
Eurasian Arctic, with the exception of West Beringia.
In conclusion, this study shows that environmental change

during the Late Quaternary climate-warming events contracted
distribution range, reduced effective population size, and decreased
genetic diversity in an Arctic specialist, the collared lemming,
across northern Eurasia. As supported by the ancestral phyloge-
netic position of the West Beringian group and the divergence
time estimates of the other Eurasian clades, West Beringia was
likely the single refugium during the continental range contraction
caused by the high-magnitude climate warming of the last in-
terglacial, followed by westward recolonization of northern Eur-
asia in the last glacial period. In line with these results, the highest
mitogenome diversity was found in West Beringia and our de-
mographic reconstruction indicates a constantly large effective
population size thriving in this area over the last 60 kyr. It is likely
that northward forest expansion over tundra during the Holocene
thermal optimum did not affect the collared lemming in West
Beringia while it reduced genomic diversity and effective pop-
ulation size in all other regions of the Eurasian Arctic. Under
forecasted moderate climate warming, predicted habitat loss by
2080 for the collared lemming (41), a keystone species in the food
web of Arctic communities, is comparable to range contraction
during the last interglacial. Our study highlights the importance of
West Beringia as a potential refugium for cold-adapted species

Table 1. Mitogenome diversity and demographic statistics for regional samples of the Eurasian collared lemming

Group n s h Hd π, % Fs R2 TMRCA y, (95% HPD)

Pechora 4 9 2 0.67 0.037 ± 0.011 — — 6,430 (2,650 to 10,700)
Yamal 10 13 9 0.98 0.019 ± 0.003 −5.170*** 0.072*** 4,000 (1,900 to 6,440)
Taymyr 14 43 14 1.00 0.062 ± 0.009 −6.497** 0.095* 11,720 (6,950 to 17,300)
Yana-Kolyma 10 39 9 0.98 0.065 ± 0.015 −1.501 0.095** 12,620 (7,440 to 19,100)
Pooled P, Y, T, YK 38 291 34 0.99 0.530 ± 0.021 — — 77,091 (54,225 to 107,101)
West Beringia 16 314 15 0.99 0.491 ± 0.029 0.449 0.102 63,150 (44,900 to 87,700)

The table shows sampling size (n), number of segregating sites (s), number of different haplotypes (h), haplotype (Hd) and nucleotide (π, %) diversities,
demographic expansion statistics (Fs and R2), and time of the most recent common ancestor in phylogeographic groups. Asterisks indicate significance level.
*P < 0.05; **P < 0.01; ***P < 0.001.

Fig. 5. Bayesian skyline plot based on mitogenome sequences showing
effective size (Ne) changes through time in phylogeographic groups of col-
lared lemmings. The green bar on the time scale indicates the warming
period of the Holocene thermal maximum (HTM) (10 to 3 kyr).
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under ongoing global warming. This conclusion is supported by
recent paleoecological evidence suggesting a smaller temperature
increase and moderate northward forest advances in the extreme
northeast of Eurasia during the Late Pleistocene-to-Holocene
warming events (16).

Materials and Methods
Sample Collection and DNA Extraction. We collected lemmings (Dicrostonyx
torquatus, Pallas) across the Eurasian Arctic in the summers of 1994, 2002, and
2006 (Fig. 1). All tissue samples were deposited in the Mammal Collection, Uni-
versity of Alaska Museum of the North, from where additional tissue samples
of North American lemmings (D. groenlandicus, Traill) were obtained to be in-
cluded as an outgroup (SI Appendix, Table S1). Total genomic DNA was isolated
from frozen or ethanol-preserved tissues by the use of the QIAGEN DNeasy Kit.

Mitochondrial Genomic Amplification and Sequencing. Complete mitochondrial
genome (16,348 bp) sequences were obtained by amplification with PCR and
capillary sequencing of amplified segments from both directions. A total of 16
pairs of primers (available on request) were designed for PCR amplification and
sequencing. Annotated reference mitogenome assemblies were previously de-
scribed (42, 43). We sequenced 54 mitogenomes of the Eurasian D. torquatus
and genomes of 6 individuals of the North American D. groenlandicus.

RAD-Sequencing Data. Thirty-one individuals of D. torquatus from Eurasia
(8 individuals each from West Beringia, Yana-Kolyma, and Yamal, and 7 from
Taymyr) and 4 D. groenlandicus from Alaska were selected for reduced-
representation genomic analysis due to higher DNA quality. Double-
barcoded RAD-sequencing libraries were prepared following the protocol
in Baird et al. (44) with modifications (45) and paired-end 125-bp sequenced
(HiSeq 2500; V4 chemistry) at the Norwegian Sequencing Centre, University
of Oslo.

After quality filtering, demultiplexing, and PCR-duplicate removal, se-
quenced reads were then de novo aligned into loci and single-nucleotide
polymorphisms (SNPs) called across individuals using the script denovo_map.pl
in the Stacks package version 1.48 (46). Settings for assembly parameters were
tweaked to take into account the high genetic diversity of populations
ranging across a broad geographical area and of different species (47, 48).
Assembled loci were extracted from the catalog and quality-filtered (49). After
excluding low-coverage samples with more than 25% missing loci, we gen-
erated a dataset including 15,619 loci genotyped in 26 D. torquatus samples,
with a maximum 27% missing loci per individual and 24% missing genotypes
per locus (Dataset Dtorquatus.txt). Genotype data for the low-coverage sam-
ples, where available, and for the 4 D. groenlandicus samples were then added
to this dataset (Dataset Dicrostonyx.txt) to be used in the Neighbor-Net and
TreeMix analyses (see SI Appendix for further details).

Analysis of Mitogenome Sequences.We conducted phylogenetic analysis of all
mitochondrial genome sequences by using a coalescence-based approach as
implemented in the software BEAST version 2.3 (50). The Yule tree prior was
selected as suggested for interspecific phylogeny (50). After using ModelTest
to find the simplest model of nucleotide substitution with good fit to the
data on the basis of the Bayesian information criterion (51), we chose the
HKY model with gamma-distributed rate variation. We assumed a strict
molecular clock model, as preliminary analyses using a relaxed uncorrelated
log-normal clock showed that the coefficient of log rate variation on
branches (0.07) was smaller than 0.1 (52). To assess approximate timing of
events in demographic history, we calibrated a molecular clock by placing a
log-normal prior on the root of the tree, representing the divergence be-
tween the Eurasian D. torquatus and North American D. groenlandicus with
the mean of 760 kyr as the first occurrence of the fossil record in North
America (18, 19) and 95% CIs from 620 kyr to 1.1 My. We conducted 2 in-
dependent runs with 80 million iterations each, sampling from the posterior
every 1,000 iterations and discarding the first 10% of sampled iterations as
burn-in. Parameter mixing and convergence of the chains on a stationary
distribution were assessed with Tracer version 1.6 (53). We obtained a
maximum clade-credibility tree by use of TreeAnnotator and visualized the
tree with FigTree version 1.3.1 (54). A Bayesian discrete phylogeography
analysis was used to reconstruct the ancestral state and possible source of
continental migration of the Eurasian lemmings as outlined in Faria et al.
(55), coding the geographic location of all samples as a discrete trait and
setting its substitution model as symmetric to allow reversible transition
rates between locations. Three independent runs of 100 million iterations
each were run in BEAST 1.10 (56). For each internal node, we obtained the
posterior of each discrete state for the location trait and calculated the

Bayes factor between the state with the highest posterior and all other
states in pairwise comparisons. To analyze changes in relative population
sizes over time, we reconstructed demographic histories independently in 4
phylogeographic groups (Y, T, YK, and WB) by using the Bayesian skyline
plot (57) as implemented in Tracer version 1.6, with the substitution rate
informed by phylogenetic analysis and the mean generation time of 1 y.
Haplotype, nucleotide diversities, and demographic history statistics (33, 58)
were calculated using DnaSP version 5 (59).

Analysis of RAD-Sequencing Data. To reveal the relationships among all in-
dividuals of the Eurasian D. torquatus relative to the North American out-
group D. groenlandicus, we built a Neighbor-Net (60) based on pairwise
uncorrected p distances among samples. The generalization of a phyloge-
netic network, as compared with a tree, is an advantage when a set of
multiple loci could have conflicting histories (e.g., due to recombination,
admixture, etc.). Considering only the variable sites, we concatenated all loci
for each individual in 2 sequences, randomly choosing the alternative alleles
at heterozygous loci. Each individual is then represented by 2 tips in the
resulting Neighbor-Net, where summed branch length separating them is
proportional to individual heterozygosity. In the population under HW
equilibrium, we expect the 2 tips representing an individual to be as far
apart as any other tip from the same population. As this method is robust to
missing data, we used the Dicro dataset, which includes also the genotypes
of the low-coverage individuals as well as the 4 D. groenlandicus samples as
an outgroup. The software SplitsTree4 (61) was used to build the Neighbor-
Net. In addition, we used allele frequency data estimated on 1 randomly
selected SNP per locus in the Dicro dataset to infer the pattern of splits and
mixtures among the Eurasian phylogroups as identified in previous analyses.
To account for secondary contacts and/or migrations among diverged pop-
ulations while reconstructing the relationships among the sampled pop-
ulations, we used the method implemented in TreeMix (62). The North
American D. groenlandicus was set as an outgroup and the likelihood of
models including from 0 to 5 migration events was estimated. The genetic
structure across the Eurasian Arctic was also analyzed using the recently
developed fineRADstructure (version 0.2) software package (63). Taking
advantage of linked SNPs in each locus of the Dtorq dataset, we built a
coancestry matrix of the 26 D. torquatus individuals. The nucleotide differ-
ences between the alleles of each individual and the alleles found in all of
the other individuals at each locus were estimated and a coancestry matrix
summarizing the nucleotide differences among individuals across all loci was
constructed. We ran the scripts RADpainter and fineSTRUCTURE using default
settings (http://cichlid.gurdon.cam.ac.uk/fineRADstructure.html).

The average number of polymorphic sites per locus, expected heterozy-
gosity (He), Watterson’s theta (θW), and nucleotide diversity (π) were estimated
in each of the 4 Eurasian groups using the Dtorq dataset. Summary statistics
were calculated for each locus and then averaged across all loci. In order to
obtain estimates unbiased by sample size in each population, genetic diversity
statistics were calculated by selecting at random 4 individuals per population
at each locus. Loci with less than 4 individuals genotyped in a particular
population were not included in the estimates concerning that population.

Species Distribution Modeling. Species distribution models (SDMs) were made
via both current and past climate data at 2.5′ (4-km) spatial resolution, based
on bioclimatic variables from the WorldClim dataset (64) (version 1.4). The last
glacial maximum (LGM) climate data are derived from CMIP5 and utilize 3
general circulation model simulations: NCAR-CCSM, version 4.0; MIROC, version
ESM 2010; and MPI, version ESM-LR. The last interglacial (LIG) climate data are
derived from only the CCSMmodel (65). We compiled geospatial occurrences of
D. torquatus collected by the authors. Because it has been shown that spatial
sampling bias can result in overfit models (66–68), we removed redundant
geolocations within 20 km, resulting in 21 occurrences used in modeling.

We used Maxent (version 3.3.3k) to first build SDMs of the present day and
then project these models to past climates. The projection of species distri-
butions to past or future climates has been criticized (69, 70), notably when
models are overly fitted to present-day climates and then projected across
timescales (71, 72). Thus, we utilized a number of measures to attempt to
model the fundamental niche (70, 73). Besides pruning occurrences, we con-
structed present-day SDMs in a mask (40E–168W; 48N–85N) to avoid areas
where congeners are absent, presumably for nonclimatic reasons (74, 75). We
also removed correlated variables (Pearson’s correlation coefficient R2 > 0.8)
among the 19 WorldClim variables to avoid overly complex models. Because
parameter tuning can reduce overfitting and improve model performance
(69), we optimized the regularization parameter (76), which penalizes the
model proportional to the variance of features observed at presence localities
and also inversely proportional to the square root of sample sizes (77). We
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found the optimal regularization value (testing 1, 3, 5, 7, 9, 11, 13, and 15)
using ENMTools version 1.3 (78), holding features constant.

With optimized model parameters, we first projected the present-day
SDM, having a limited extent, onto the entire Palearctic region also for
present-day climate. The SDM was next projected to past periods. All model
outputs shown are averages of 5 replicates using the “cross-validate” option,
with pixels receiving a continuous output score of between 0 and 1 indi-
cating habitat suitability. For map calculations, we converted the outputs to
binary predictions (suitable or unsuitable) but using 2 thresholds: minimum
training presence or low, and equal training sensitivity and specificity or
high (73). For the LGM and Middle Holocene timescales with multiple model
simulations, we mapped habitat considered suitable by all 3 climate models
used under both low and high thresholds. Arc Calculator in ArcGIS 10.0 was
used for summing SDM outputs and calculating numbers of suitable pixels
for each timescale. From these calculations, we estimated the percent of
habitat loss in the LIG relative to both the present day and the LGM, as well
as the percent of habitat loss in the Middle Holocene relative to both the
present day and the LGM for the entire Eurasian Arctic.

Data Availability Statement. The DNA sequences were deposited in the NCBI
GenBank database (SI Appendix, Table S1).
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